

On-Road Mobile Source PM and Black Carbon Emission Rates

Steven H. Cadle GM Research and Development

Black Carbon Emissions and Climate Change Workshop
October 13-15, 2004
San Diego, CA

Overview

- Mobile sources are a significant urban source of PM
 - Exhaust
 - Tire wear
 - Brake wear
 - Re-entrained road dust
- Emission are a function of:
 - Technology
 - Gasoline, diesel, two-stroke, DI gasoline
 - Emission control devices
 - Vehicle maintenance
 - Driving cycle
 - Fuel
 - Ambient conditions

Historical PM Emission Rates for Properly Functioning Light-Duty Gasoline Vehicles

ERC Study of FTP Exhaust PM Emissions from Properly-Functioning 1994-1998 Gasoline Vehicles

Vehicles operated on CA phase 2 gasoline

Measurement Issues

- PM mass operationally defined
 - Semi-volatiles
 - Filter adsorption of organics
- Black carbon
 - Generally not measured (except some smoke meter data)
 - OC/EC operationally defined
 - Thermal/optical methods
 - Vacuum oven method for OC
 - OC by extraction
 - Are optical measurements of black carbon needed?

CRC E-24: Age Distribution of PM Emission Rates for Light-Duty Gasoline Vehicles (1997 and older)

Percent of Total Carbon Present as Elemental Carbon in E-24 Study

Category	Denver	San Antonio	SCAQMD
1991-97	39	47	63
1986-90	29	26	20
1981-85	30	27	27
Pre-1981	14	36	21
Smokers	11	7	ND

Light-Duty Gasoline Vehicle IM240 PM₁₀ Emission Rates (1999 Central Carolina Study)

Percent EC in the Central Carolina Study

PM Emission Rate	% of TC present as EC
3.0 – 5.99	26.2
6.0 – 15.9	21.8
16.0 – 33.9	29.9
34 - 58	18.6
59 - 339	18.4

No cold start emissions

PM10 Emission Rates from 1999 EPA Juarez, Mexico Study

Kansas City Study

- EPA, CRC, DOE-NREL, DOT and state and local agencies through EIIP are funding a study on in-use light-duty gasoline PM emissions
- Well characterized vehicle recruitment
- 480 vehicles tested on the EPA transportable dynamometer using the LA92 Unified Driving Cycle in 2004/2005 (summer and winter phases)
- Objectives
 - Identify the distribution of PM emissions in the vehicle fleet
 - Identify the fraction of PM high emitters in the vehicle fleet
 - Evaluate and improve existing mobile source PM inventories and models
- Summer phase completed

Effect of Low Temperature on FTP Exhaust PM Emission Rates, mg/mi

Heavy Heavy Duty Diesel Vehicle Emission Standards in the U.S.

Slide courtesy Hector Maldonado, CARB

Average PM Emissions

Model year group

Slide courtesy Hector Maldonado, CARB

EC/OC Ratios for HDDVs in CRC E-55/59

30 20

Slide courtesy of William Vance, CARB

3

5

20%

•idle ratio < trans/cruise ratio

Median EC/TC with 95% confidence intervals median (idle, trans, cruise) = (0.33, 0.65, 0.62) Excluded 2 1980's and 1 MHD

The lower and upper lines of the "box" are the 25th and 75th percentiles of the sample.

The notches in the box are a graphic 95% confidence interval about the median

Slide courtesy of William Vance, CARB

MOUDI Impactor Particle Size Mass Distributions

1979 Ford Fairmont

Diesel Vehicle

1984 Volkswagen Rabbit

DOE Gasoline/Diesel PM Split Study

- Ambient samples collected in the SCAQMD June-July 2001
- Source samples collected May-September 2001
 - 59 light-duty vehicles tested on the UC
 - 32 heavy-duty vehicles tested on 5 cycles
- Chemistry performed by DRI and Univ. of Wisconsin-Madison
- Source profiles to be created and source apportionment will be performed on the ambient samples

PM Emissions from Tire Wear

- Average tire-wear rate is approximately 50 mg/tire/mile i.e. 200 mg/mi for passenger vehicles and higher for HD vehicles
- Most of the tire-wear PM is large particles.
- Few studies on tire wear PM size distribution. Summary of results suggest 5-6% of the PM is in the PM10 size range.
- EPA uses an emission rate of rate of 2 mg/mi per tire for PM10
- Wear rates dependant on driving mode
- European commission estimates 5% of tire wear PM smaller than 1 um

4

Composition of Tire Wear PM

- Composition of PM very similar to bulk tread composition
- Approximate bulk composition of tread:
 - 40% polymer
 - 40% carbon black or other fillers
 - 18% oil (high aromatic content)
 - Other (S, Zn, etc.)

Brake Wear Emissions

- Engineering estimates of brake wear range from 18 mg/mi for small vehicles to 47 mg/mi for a large pickup truck
- Laboratory studies suggest 30% of the wear is in the PM10 size range (i.e. 5 to 14 mg/mi)
- Brake wear emission rates from asbestos and metallic brake pads estimated by EPA at 13 mg/mi for PM10

Brake Pad Composition

- Many different formulations in use
- Composition:
 - Fibers (metallic, mineral, ceramic, aramid)
 - Binder (Phenolic resin)
 - Fillers (Barium sulfate, clays, metal powders, ground rubber, cashew dust,etc.)
 - Friction modifiers (graphite, carbon black, etc.)

Example Brake Pad Composition Based on MSDS Information

2-7%

Phenolic resin	5-10%
Copper fiber	10-15%
Aramid fiber	2-7%
Potassium titanate	25-30%

Zirconium oxide 5-10%

Antimony sulfide

Barium sulfate 15-20%

Calcium hydroxide 2-7%

Cashew dust 5-10%

Graphite 5-10%

Is there a need to determine the optical absorption of brake wear PM?

Re-entrained Road Dust

- Emission rates highly variable
 - Road surface (paved/unpaved)
 - Road surface silt (<75 um particles)
 - Particle size
 - Average weight of vehicles
 - Vehicle speed
 - Moisture
- EPA Part 5 estimate: 35 mg/mi PM10 for light-duty vehicles
- Inventory generally felt to overestimate re-entrained road dust
- Includes tire wear, brake wear, and road surface wear (asphalt)

Synopsis

- Exhaust PM emissions have decreased markedly for both on-road gasoline and diesel vehicles
- PM emissions do not come from exhaust alone.
- For the current gasoline light-duty fleet PM₁₀ emission rates are roughly 15 mg/mi from exhaust, 10 mg/mi for brake wear, 8 mg/mi for tire wear and 35 mg/mi for re-entrained road dust
- Light-duty vehicle black carbon emissions could be 4 mg/mi from exhaust, 1mg/mi from brakes, 3 mg/mi from tire wear
- Exhaust PM emissions inventories are uncertain due to the skewed distribution of emissions and poor data on the effect of other variables

Synopsis

- More in-use HDD data are needed to estimate exhaust BC emission rates
- The implementation of particle traps on 2007 and later model year HDD vehicles will greatly reduce BC emissions
- The impact of particle trap retrofit programs will need to be factored into the inventory as well